Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry.

Identifieur interne : 004105 ( Main/Exploration ); précédent : 004104; suivant : 004106

Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry.

Auteurs : Carl J. Douglas [Canada] ; Jürgen Ehlting

Source :

RBID : pubmed:16245146

Descripteurs français

English descriptors

Abstract

Sequenced plant genomes provide a large reservoir of known genes with potential for use in crop and tree improvement, but assignment of specific functions to annotated genes in sequenced plant genomes remains a challenge. Furthermore, most plant genes belong to families encoding proteins with related but distinct functions. In this commentary, we discuss our development of Arabidopsis spotted whole genome longmer oligonucleotide microarrays, and their use in global transcription profiling. We show that longmer array based transcriptome analysis in Arabidopsis can be used as an efficient and effective gene discovery and functional genomics tool, particularly for functional analyses of members of large gene families. We discuss experiments that focus on gene families involved in phenylpropanoid natural product biosynthesis and fiber differentiation. These analyses have helped to elucidate functions of individual gene family members, and have identified new candidate genes involved in fiber development and differentiation. Results obtained by these studies in Arabidopsis can be used as the basis for gene discovery in commercially important plants, and we have focused our attention on Populus trichocarpa (poplar), a species important in forestry and agroforestry for which complete genome sequence information is available.

DOI: 10.1007/s11248-005-8926-x
PubMed: 16245146


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry.</title>
<author>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, BC V6T 1Z4 Vancouver, Canada. cdouglas@interchange.ubc.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, BC V6T 1Z4 Vancouver</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:16245146</idno>
<idno type="pmid">16245146</idno>
<idno type="doi">10.1007/s11248-005-8926-x</idno>
<idno type="wicri:Area/Main/Corpus">003F35</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003F35</idno>
<idno type="wicri:Area/Main/Curation">003F35</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003F35</idno>
<idno type="wicri:Area/Main/Exploration">003F35</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry.</title>
<author>
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, BC V6T 1Z4 Vancouver, Canada. cdouglas@interchange.ubc.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, BC V6T 1Z4 Vancouver</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
</author>
</analytic>
<series>
<title level="j">Transgenic research</title>
<idno type="ISSN">0962-8819</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (MeSH)</term>
<term>Arabidopsis (genetics)</term>
<term>Forestry (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genetic Techniques (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Plants, Edible (genetics)</term>
<term>Populus (genetics)</term>
<term>Trees (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agriculture (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Arbres (génétique)</term>
<term>Génome végétal (MeSH)</term>
<term>Plantes comestibles (génétique)</term>
<term>Populus (génétique)</term>
<term>Science forêt (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Techniques génétiques (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Plants, Edible</term>
<term>Populus</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Arbres</term>
<term>Plantes comestibles</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agriculture</term>
<term>Forestry</term>
<term>Gene Expression Profiling</term>
<term>Genetic Techniques</term>
<term>Genome, Plant</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agriculture</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Génome végétal</term>
<term>Science forêt</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Techniques génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sequenced plant genomes provide a large reservoir of known genes with potential for use in crop and tree improvement, but assignment of specific functions to annotated genes in sequenced plant genomes remains a challenge. Furthermore, most plant genes belong to families encoding proteins with related but distinct functions. In this commentary, we discuss our development of Arabidopsis spotted whole genome longmer oligonucleotide microarrays, and their use in global transcription profiling. We show that longmer array based transcriptome analysis in Arabidopsis can be used as an efficient and effective gene discovery and functional genomics tool, particularly for functional analyses of members of large gene families. We discuss experiments that focus on gene families involved in phenylpropanoid natural product biosynthesis and fiber differentiation. These analyses have helped to elucidate functions of individual gene family members, and have identified new candidate genes involved in fiber development and differentiation. Results obtained by these studies in Arabidopsis can be used as the basis for gene discovery in commercially important plants, and we have focused our attention on Populus trichocarpa (poplar), a species important in forestry and agroforestry for which complete genome sequence information is available.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16245146</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>01</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0962-8819</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>14</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2005</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Transgenic research</Title>
<ISOAbbreviation>Transgenic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry.</ArticleTitle>
<Pagination>
<MedlinePgn>551-61</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Sequenced plant genomes provide a large reservoir of known genes with potential for use in crop and tree improvement, but assignment of specific functions to annotated genes in sequenced plant genomes remains a challenge. Furthermore, most plant genes belong to families encoding proteins with related but distinct functions. In this commentary, we discuss our development of Arabidopsis spotted whole genome longmer oligonucleotide microarrays, and their use in global transcription profiling. We show that longmer array based transcriptome analysis in Arabidopsis can be used as an efficient and effective gene discovery and functional genomics tool, particularly for functional analyses of members of large gene families. We discuss experiments that focus on gene families involved in phenylpropanoid natural product biosynthesis and fiber differentiation. These analyses have helped to elucidate functions of individual gene family members, and have identified new candidate genes involved in fiber development and differentiation. Results obtained by these studies in Arabidopsis can be used as the basis for gene discovery in commercially important plants, and we have focused our attention on Populus trichocarpa (poplar), a species important in forestry and agroforestry for which complete genome sequence information is available.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Douglas</LastName>
<ForeName>Carl J</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of British Columbia, BC V6T 1Z4 Vancouver, Canada. cdouglas@interchange.ubc.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ehlting</LastName>
<ForeName>Jürgen</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Transgenic Res</MedlineTA>
<NlmUniqueID>9209120</NlmUniqueID>
<ISSNLinking>0962-8819</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016468" MajorTopicYN="N">Forestry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005821" MajorTopicYN="N">Genetic Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="Y">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010945" MajorTopicYN="N">Plants, Edible</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>34</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2005</Year>
<Month>06</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2005</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>1</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>10</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16245146</ArticleId>
<ArticleId IdType="doi">10.1007/s11248-005-8926-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2000 Nov;124(3):1105-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11080288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1570-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2001 Apr;382(4):645-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11405227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jan;37(2):239-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Jul;19(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Jun;5(3):224-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Nov;64(6):1097-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2003;4(1):R5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12540297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Jan;116(1):357-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9449848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):1065-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2000 Sep;29(3):548-50, 552-4, 556 passim</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10997270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Jul 11;272(1-2):61-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11470511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Dec;54(393):2709-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 May;10(5):210-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15882652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Sep 1;3(5):371-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 10;101(6):1455-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14745009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):637-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12909722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Nov 15;28(22):4552-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11071945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1996 Dec;14(13):1675-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9634850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Jan;21(1 Suppl):20-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9915496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2002 Apr;114(4):594-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11975734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jun;42(5):618-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15918878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jun;135(2):615-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Nov;133(3):1051-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14612585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(6):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14675440</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Ehlting, Jurgen" sort="Ehlting, Jurgen" uniqKey="Ehlting J" first="Jürgen" last="Ehlting">Jürgen Ehlting</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Douglas, Carl J" sort="Douglas, Carl J" uniqKey="Douglas C" first="Carl J" last="Douglas">Carl J. Douglas</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004105 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004105 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16245146
   |texte=   Arabidopsis thaliana full genome longmer microarrays: a powerful gene discovery tool for agriculture and forestry.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16245146" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020